11 research outputs found

    The fitness cost of mis-splicing is the main determinant of alternative splicing patterns

    Get PDF
    Background Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. Results We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92–98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. Conclusions These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift

    Overexpression of atg8 in arabidopsis stimulates autophagic activity and increases nitrogen remobilization efficiency and grain filling

    No full text
    International audienceAutophagy knock-out mutants in maize and in Arabidopsis are impaired in nitrogen (N) recycling and exhibit reduced levels of N remobilization to their seeds. It is thus impoortant to determine whether higher autophagy activity could, conversely, improve N remobilization efficiency and seed protein content, and under what circumstances. As the autophagy machinery involves many genes amongst which 18 are important for the core machinery, the choice of which AUTOPHAGY (ATG) gene to manipulate to increase autophagy was examined. We choose ATG8 overexpression since it has been shown that this gene could increase autophagosome size and autophagic activity in yeast. The results we report here are original as they show for the first time that increasing ATG8 gene expression in plants increases autophagosome number and promotes autophagy activity. More importantly, our data demonstrate that, when cultivated under full nitrate conditions, known to repress N remobilization due to sufficient N uptake from the soil, N remobilization efficiency can nevertheless be sharply and significantly increased by overexpressing ATG8 genomic sequences under the control of the ubiquitin promoter. We show that overexpressors have improved seed N% and at the same time reduced N waste in their dry remains. In addition, we show that overexpressing ATG8 does not modify vegetative biomass or harvest index, and thus does not affect plant development

    TATTOO-seq delineates spatial and cell type-specific regulatory programs during limb patterning

    No full text
    The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we applied a new unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs that underlie the emergence of specialized cell types during limb development and their integration in space. We uncovered combinations of transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, enabling the deconvolution of cell fate and position identity. We demonstrate that the embryonic limb undergoes a complex multi-scale re-organization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, specific alterations in the molecular identities of other pre-existing cell states and changes in their relative spatial distribution. Altogether, our study shows how multi-dimensional single-cell and spatially resolved molecular atlases could reveal the interconnected genetic networks that regulate the intricacies of organogenesis and its reorganization upon genetic alterations

    TATTOO-seq delineates spatial and cell type–specific regulatory programs in the developing limb

    No full text
    International audienceThe coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states’ molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations

    Additional file 1: of The fitness cost of mis-splicing is the main determinant of alternative splicing patterns

    No full text
    Includes Text S1–S4, Figures S1–S13, and Tables S1–S3: Text S1. Definition of canonical splice forms. Text S2. Regulation of splicing factors by AS-NMD in paramecia. Text S3. Signatures of selective pressure against splicing errors. Text S4. Quantification of the proportion of splicing errors: extended model. Text S5. Estimates of IR rate are robust to possible contamination by genomic DNA. Figure S1. Impact of NMD on observed IR rates: comparison of biological replicates. Figure S2. Impact of NMD on observed PCI splicing rates: comparison of biological replicates. Figure S3. Distribution of AS rate in WT cells. Figure S4. NMD-sensitive introns in P. tetraurelia SRSF-like genes. Figure S5. Relationship between AS rate expression level, for NMD-visible or NMD-invisible splicing events. Figure S6. Splicing rate of PCIs according to their length. Figure S7. Relationship between AS rate and expression level in human genes, for NMD-visible or NMD-invisible AS events. Figure S8. Variation in SNP density at splice sites and flanking third codon positions according to gene expression level. Figure S9. The fraction of introns with consensus splice signals does not vary with IR rate. Figure S10. Signatures of selective pressure against cryptic splicing signals in P. tetraurelia. Figure S11. Somatic knockouts of UPF1A and UPF1B genes. Figure S12. Common forms of AS in humans. Figure S13. Read depth in intergenic regions according to the expression level of flanking genes. Table S1. Summary of RNA-seq samples. Table S2. Number of introns or cryptic introns showing evidence of AS in RNA-seq samples from WT or NMD-deficient paramecia. Table S3. RNA-seq libraries analyzed to quantify ASSV in human. (PDF 1759 kb

    Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq

    No full text
    International audienceThe emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation

    Genome-defence small RNAs exapted for epigenetic mating-type inheritance.

    No full text
    International audienceIn the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms
    corecore